Safe Trajectory Synthesis for Autonomous Driving in Unforeseen Environments

نویسندگان

  • Shreyas Kousik
  • Sean Vaskov
  • Matthew Johnson-Roberson
  • Ramanarayan Vasudevan
چکیده

Path planning for autonomous vehicles in arbitrary environments requires a guarantee of safety, but this can be impractical to ensure in real-time when the vehicle is described with a high-fidelity model. To address this problem, this paper develops a method to perform trajectory design by considering a low-fidelity model that accounts for model mismatch. The presented method begins by computing a conservative Forward Reachable Set (FRS) of a high-fidelity model’s trajectories produced when tracking trajectories of a low-fidelity model over a finite time horizon. At runtime, the vehicle intersects this FRS with obstacles in the environment to eliminate trajectories that can lead to a collision, then selects an optimal plan from the remaining safe set. By bounding the time for this set intersection and subsequent path selection, this paper proves a lower bound for the FRS time horizon and sensing horizon to guarantee safety. This method is demonstrated in simulation using a kinematic Dubin’s car as the low-fidelity model and a dynamic unicycle as the highfidelity model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Philosophy for Developing Trust in Self‐ Driving Cars

For decades, our lives have depended on the safe operation of automated mechanisms around and inside us. The autonomy and complexity of these mechanisms is increasing dramatically. Autonomous systems such as self-driving cars rely heavily on inductive inference and complex software, both of which confound traditional software-safety techniques that are focused on amassing sufficient confirmator...

متن کامل

Core Ontologies for Safe Autonomous Driving

Representing the knowledge of driving environments in a structured machine-readable format is necessary for safe autonomous driving. We use ontologies to represent the knowledge of maps, driving paths, and driving environments to improve safety for smart vehicles. In this paper, we introduce core ontologies that are used for developing Advanced Driver Assistance Systems. The ontologies can be r...

متن کامل

Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estima...

متن کامل

Path and velocity trajectory selection in an anticipative kinodynamic motion planner for autonomous driving

This paper presents an approach for plan generation, selection and pruning of trajectories for autonomous driving, capable of dealing with dynamic complex environments, such as driving in urban scenarios. The planner first discretizes the plan space and searches for the best trajectory and velocity profile of the vehicle. The main contributions of this work are the use of G-splines for path gen...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00091  شماره 

صفحات  -

تاریخ انتشار 2017